Pengertian Sensor Proximity (Sensor Jarak), Fungsi dan Jenisnya

Apakah anda mengetahui apa itu sensor proximity? Pernahkah anda menggunakannya? Artikel kali ini akan membahas secara lebih mendalam tentang sensor proximity, mulai dari pengertian, jenis-jenisnya hingga membahas mengenai kelebihan dan kekurangan dari penggunaan sensor ini.

Pada umumnya, sensor proximity yang banyak beredar di pasaran adalah sensor induktif dan sensor kapasitif. Pada sensor kapasitif dan induktif terdiri dari probe dan driver. Probe merupakan perangkat fisik yang menghasilkan medan penginderaan, sedangkan driver adalah alat elektronik yang menggerakkan probe dan menghasilkan tegangan keluaran yang sebanding dengan hasil pengukuran. Pada beberapa sensor, driver secara fisik terintegrasi dalam probe itu sendiri.

Probe and driver
Probe and driver

Pengertian Sensor Proximity (Sensor Jarak)

Sensor proximity adalah semua sensor yang melakukan penginderaan dengan cara nonkontak, sensor ini mengubah informasi tentang pergerakan atau keberadaan target menjadi sinyal listrik. Secara umum, ada tiga cara sistem pendeteksian pada sensor proximity,

  • Sistem yang menggunakan arus eddy yang dihasilkan pada target penginderaan logam dengan induksi elektromagnetik.
  • Sistem yang mendeteksi perubahan kapasitansi listrik ketika mendekati target penginderaan.
  • Sistem yang menggunakan magnet dan saklar.

Jenis Jenis Sensor Proximity

Pada artikel ini, akan dibahas beberapa jenis sensor proximity yaitu sensor induktif, kapasitif, ultrasonik, dan sensor fotolistrik.

1. Sensor Proximity Induktif

Sensor induktif
Sensor induktif

Sensor induktif yang dikenal juga sebagai sensor arus eddy adalah sensor nonkontak yang digunakan untuk pengukuran yang presisi dari posisi target berbahan konduktif. Sensor ini beradaptasi dengan baik pada lingkungan yang tidak bersahabat di mana oli, cairan pendingin, atau cairan lain mungkin muncul di celah. Sensor induktif sensitif terhadap jenis bahan target. Tembaga, baja, aluminium dan logam lainnya bereaksi berbeda terhadap sensor, sehingga untuk kinerja optimal sensor harus dikalibrasi ke bahan target yang ingin diukur.

Sensor induktif dikenal sebagai sensor dengan resolusi nanometer, memiliki respon frekuensi 80 kHz atau lebih tinggi, dan tidak terpengaruh terhadap kontaminan di area pengukuran. Sensor ini biasanya memiliki rentang pengukuran 0,5 mm hingga 15 mm meskipun dalam beberapa aplikasi, rentang yang jauh lebih kecil dan lebih besar dapat dicapai oleh sensor. Medan magnet sensor induktif menciptakan arus listrik di dalam bahan target, sehingga target yang diukur memiliki persyaratan ketebalan minimum.

Dengan melewatkan arus bolak-balik melalui kumparan di ujung probe, sensor induktif menghasilkan medan elektromagnetik bolak-balik di sekitar ujung probe. Ketika medan bolak-balik ini mendeteksi target, arus listrik kecil diinduksi dalam bahan target (arus eddy). Arus listrik ini, kemudian akan menghasilkan medan elektromagnetnya sendiri. Medan kecil ini bereaksi dengan medan probe sedemikian rupa sehingga elektronik driver dapat mengukurnya. Semakin dekat probe ke target, semakin banyak arus eddy yang bereaksi dengan bidang probe, sehingga semakin besar keluaran dari driver.

Sensor induktif dipengaruhi oleh tiga hal: ukuran kumparan probe dan target, jarak antara keduanya, dan bahan target. Untuk pengukuran perpindahan, sensor dikalibrasi untuk bahan target dan ukuran probe tetap konstan, menyisakan celah target/probe sebagai satu-satunya variabel. Karena kepekaannya terhadap perubahan material, teknologi arus eddy juga digunakan untuk mendeteksi cacat, retak, jahitan las, dan lubang pada material konduktif.

Rekomendasi: Perbedaan Transducer dan Sensor

2. Sensor Proximity Kapasitif

Sensor kapasitif
Sensor kapasitif

Sensor kapasitif adalah sensor nonkontak yang digunakan untuk pengukuran yang presisi pada posisi, ketebalan, ataupun kepadatan dari sebuah target dengan bahan konduktif maupun nonkonduktif. Ketika digunakan pada target konduktif, maka sensor tidak akan terpengaruh oleh pengubahan bahan dari target. Semua bahan konduktor akan terlihat sama pada sensor kapasitif. Sensor kapasitif dapat merasakan permukaan dari target konduktif, sehingga ketebalan material tidak menjadi masalah. Bahkan, plat tipis pun dapat dijadikan target yang baik.

Sensor kapasitif diterapkan secara luas pada semikonduktor, disk drive, dan industri manufaktur yang membutuhkan presisi, di mana akurasi dan respon dari frekuensi yang tinggi merupakan faktor penting. Selain itu, sensor kapasitif juga dapat digunakan untuk target berbahan nonkonduktor, yang terkenal ada pada industri pengemasan yang biasanya digunakan untuk mendeteksi label, memantau ketebalan lapisan, dan mendeteksi ketebalan cat, kertas, dan film.

Sensor kapasitif dikenal sebagai sensor dengan resolusi nanometer, memiliki respon frekuensi 20 kHz atau lebih tinggi, dan stabilitas suhu. Sensor ini biasanya memiliki rentang pengukuran 10 m hingga 10 mm, meskipun dalam beberapa aplikasi rentang yang digunakan bisa jauh lebih kecil ataupun lebih besar dari nilai tersebut.

Sensor kapasitif sensitif terhadap material yang terdapat di celah antara sensor dan target. Oleh karena itu, sensor kapasitif tidak akan berfungsi dengan baik di lingkungan yang kotor dari penyemprotan cairan, debu, atau serpihan logam. Umumnya, di antara celah tersebut hanya ada udara. Sensor kapasitif dapat bekerja dengan baik dalam ruang hampa, tetapi sensor harus dirancang dengan benar untuk kekhasan lingkungan hampa udara untuk mencegah probe mengganggu ruang hampa.

Ketika digunakan untuk mendeteksi target berbahan konduktif, sensor kapasitif biasanya sudah dikalibrasi dari pabrik. Sedangkan penggunaan sensor kapasitif untuk bahan nonkonduktif memerlukan eksperimen untuk menentukan sensitivitas sensor terhadap bahan dan kesesuaian teknologi untuk pengukuran.

Gambar prinsip kerja sensor kapasitif
Gambar prinsip kerja sensor kapasitif

Sensor kapasitif menggunakan prinsip kapasitansi. Kapasitansi adalah sifat listrik yang ada antara dua konduktor yang dipisahkan oleh nonkonduktor. Model paling sederhana dari ini adalah dua pelat logam dengan celah udara di antara keduanya. Saat menggunakan sensor kapasitif, sensornya adalah salah satu pelat logam dan targetnya adalah pelat yang lain. Sensor kapasitif mengukur perubahan kapasitansi antara sensor dan target dengan menciptakan medan listrik bolak-balik antara sensor dan target, dan memantau perubahan medan listrik yang dihasilkan.

3. Sensor Ultrasonik

Sensor ultrasonik
Sensor ultrasonik

Sensor ultrasonik memberikan penginderaan adanya suatu objek secara nonkontak dan pelacakan jarak dari suatu objek yang diukur. Sensor jenis ini sangat berguna pada kondisi-kondisi tertentu di mana teknologi penginderaan yang lain mengalami kesulitan, misalnya objek target yang bening atau mengkilap, adanya udara berkabut atau partikel pengganggu, dan lingkungan dengan percikan cairan. Sensor ultrasonik juga sering digunakan ketika jarak penginderaan yang lebih jauh diperlukan.

Apabila terdapat kebisingan dari pabrik, tidak akan mempengaruhi operasi dari sensor ultrasonik, karena frekuensi operasinya jauh di atas frekuensi suara lingkungan. Dan karena menggunakan teknologi suara, maka akurasi dari sensor tidak akan terlalu banyak terpengaruh oleh tekanan udara, kelembapan, asap, debu, uap dan partikel udara lainnya.

Sensor ultrasonik bekerja dengan menarik transduser akustik dengan pulsa tegangan, ini akan menyebabkan transduser bergetar secara ultrasonik. Osilasi ini kemudian diarahkan pada target, dengan mengukur waktu gema kembali ke transduser, maka jarak ke target dapat dihitung. Sensor ultrasonik umumnya memberikan akurasi 1 mm pada jarak mulai dari 100 mm hingga 6.000 mm (lebih dari 19 kaki).

Sensor ultrasonik sering digunakan untuk kontrol tingkat pengisian untuk padatan dan cairan dalam industri makanan dan minuman, kimia dan plastik. Sensor ini dapat mendeteksi keberadaan bagian kaca dan membuat sistem peringatan sederhana namun sangat efektif untuk mencegah kerusakan di gudang saat forklift atau pada kendaraan yang berada pada kondisi akan terjadi tabrakan.

4. Sensor Fotolistrik (Photoelectric)

Sensor Fotolistrik
Sensor Fotolistrik

Sensor fotolistrik merespon keberadaan semua jenis objek, baik itu besar atau kecil, transparan atau buram, mengkilap atau kusam, statis ataupun bergerak. Sensor ini dapat merasakan target dari jarak beberapa milimeter hingga mencapai 100 meter. Sensor fotolistrik menggunakan unit emitter untuk menghasilkan seberkas cahaya yang dideteksi oleh penerima. Ketika berkas cahaya rusak, kehadiran  target akan terdeteksi.

Sumber cahaya emitter adalah LED yang termodulasi dan tahan terhadap getaran. Sinar ini, yang berupa inframerah, akan terlihat merah atau hijau, diaktifkan pada arus tinggi untuk interval waktu yang singkat sehingga menghasilkan pulsa energi tinggi untuk memberikan jarak pemindaian yang panjang. Sensor ini memiliki konsumsi daya yang rendah.

Bagian penerima sensor berisi fototransistor yang menghasilkan sinyal ketika cahaya terpancar di atasnya. Fototransistor digunakan karena memiliki kecocokan spektral terbaik dengan LED, respon yang cepat, dan suhu yang stabil. Dengan mengatur sirkuit penerima untuk merespon pita sempit di sekitar frekuensi LED, cahaya sekitar yang sangat tinggi dan kebisingan dapat sekitar dapat diatasi. Selain itu, mengatur bagian penerima sensor untuk merespon hanya pada fase tertentu dari pancaran pulsa dapat lebih meningkatkan tingkat sensitivitas sensor.

Ketersediaan berbagai kabel serat optik dengan elemen penginderaan memungkinkan sensor fotolistrik untuk digunakan di banyak aplikasi di mana ruang terbatas atau di mana ada lingkungan berbahaya. Sensor ini juga mampu mendeteksi objek yang bergerak dengan kecepatan tinggi dengan kemampuan deteksi hingga 8 kHz jika perlukan.

Kelebihan dan Kekurangan Sensor Proximity (Sensor Jarak)

Sensor dan perangkat pengukuran nonkontak yang memantau target tanpa kontak fisik akan memberikan beberapa keunggulan dibandingkan sensor dengan kontak. Keunggulannya antara lain,

  • Sensor nonkontak mampu memberikan respon dinamis yang lebih tinggi terhadap target yang bergerak.
  • Memiliki resolusi pengukuran yang lebih tinggi, dan kemampuan untuk mengukur bagian kecil target yang rapuh.
  • Sensor nonkontak juga hampir terbebas dari kesalahan histeresis, yaitu kesalahan yang terjadi pada sensor kontak pada titik-titik tertentu di mana target berubah arah.
  • Pada sensor nonkontak, tidak ada risiko untuk merusak bagian rapuh yang diakibatkan karena kontak dengan probe pengukuran, dan bagian-bagian tersebut dapat diukur dengan proses dinamis yang tinggi dan lingkungan yang sesuai dengan standar manufaktur.

Sensor proximity juga memiliki beberapa kekurangan yang harus diperhatikan, yaitu

  • Tidak seperti sensor kontak, yang mengandalkan kontak fisik, sensor proximity dipengaruhi oleh suhu lingkungan, target di sekitarnya, dan keberadaan sensor lainnya.
  • Pada beberapa sensor proximity, ada dua sensor wire yang digunakan, yakni untuk saluran listrik dan saluran sinyal. Hati-hati, jika hanya kabel listrik yang tersambung, elemen internalnya dapat rusak.

Related posts